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In a classic two-sample problem, one might use Wilcoxon’s statistic to test for a

difference between treatment and control subjects. The analogous microarray

experiment yields thousands of Wilcoxon statistics, one for each gene on the

array, and confronts the statistician with a difficult simultaneous inference

situation. We will discuss two inferential approaches to this problem: an empirical

Bayes method that requires very little a priori Bayesian modeling, and the

frequentist method of ‘‘false discovery rates’’ proposed by Benjamini and

Hochberg in 1995. It turns out that the two methods are closely related and can be

used together to produce sensible simultaneous inferences. Genet. Epidemiol. 23:
70–86, 2002. r 2002 Wiley-Liss, Inc.
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INTRODUCTION

Microarrays epitomize the high-throughput devices that are revolutionizing
biomedical research. They are also enlivening statistics. When applied in a
comparative experiment, for example, comparing gene activity in tumor and normal
cells, microarrays produce intriguing but difficult simultaneous inference problems.
In the main example used here, a rather typical microarray experiment, we will have
more than 3,000 Wilcoxon two-sample tests to consider at once.
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Two analyses will be discussed: a frequentist approach based on Benjamini and
Hochberg’s [1995] false discovery rate procedure, and an empirical Bayes
methodology developed in Efron et al. [2001A, 2001B]. The two approaches are
closely related and can be used to support each other, which is the principal point of
this article.

Hedenfalk et al. [2001] report on a microarray experiment concerning the
genetic basis of breast cancer. It is known that unfavorable mutations of two
different genes, BRCA1 and BRCA2, lead to greatly increased breast cancer risk.
How do the tumors resulting from the two different mutations differ in their genetic
activity? To answer this question, tumors from 22 women were analyzed, with seven
of the women known to have the BRCA1 mutation, eight known to have BRCA2,
and seven, labeled ‘‘sporadics,’’ having neither mutation. Each woman’s tumor
cells were analyzed on a separate microarray plate that measured expression
levels for 3,226 genes. Table I shows a small portion of the resulting 3,226�22 data
matrix.

Here is a schematic description of the genetic technology behind the numbers in
Table I. The known DNA base sequences for each of the 3,226 genes were printed at
known positions on the microarray plates. (There were actually 5,361 genes to begin
with, only 3,226 of which produced accurately readable results.) When the tumor
cells were hybridized on a plate, they generated messenger RNA in proportion to
each gene’s activity, producing a measurable expression level at its corresponding
DNA plate location. The expression levels were optically read using a red dye for the
effect of interest and a green dye for a background measurement used as a control.
The numbers in Table I are the logarithms of the ratio of red to green intensities
measured at each gene location as described in detail in Figure 1 of Hedenfalk et al.
[2001]. Some adjustments were made to the raw ratios (see Remarks section, Data
Adjustments).

Figure 1 concerns the comparison of gene activity in BRCA1 tumors versus
BRCA2 tumors, and so involves only the first 15 columns of the matrix begun in
Table I. For this analysis, each gene’s data were summarized by its Wilcoxon
statistic: the 15 expression levels for gene i; 7 BRCA1 and 8 BRCA2, were ranked,
giving the rank sum statistic

Yi ¼ sum of BRCA2 ranks; ði ¼ 1; 2;y; n ¼ 3226Þ: ð1:1Þ

TABLE I. Small Portion of the Data from a Microarray Experiment by Hedenfalk et al. [2001] Concerning

Genetic Activity Differences in Breast Cancer Cells; Expression Levels for 3,226 Genes on 22 Microarray

Plates; 7 from Women with BRCA1 Mutation, 8 BRCA2, 7 Sporadic (Neither).a

BRCA1 BRCA2 Sporadic

1 2 — 7 1 2 — 8 1 2 — 7

Gene1 �1.29 �1.41 — �0.55 �0.70 1.33 — 1.14 �0.44 0.26 — �0.23

Gene2 2.03 0.58 — �0.12 0.23 �0.91 — �0.39 0.70 �1.55 — 2.17

Gene3 0.32 �0.44 — 1.25 0.53 �0.96 — �0.51 �1.26 �0.74 — �0.64

Gene4 �1.31 �0.98 — 0.24 �0.24 0.28 — 2.13 0.32 0.42 — �0.65

Gene5 �0.66 �0.07 — 1.22 �0.41 �0.88 — �0.83 0.25 �0.97 — �0.21

a Tabled values are adjusted log(red/green) ratios from spotted cDNA microarrays.
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The Yi range from a low of 36, if the BRCA2 numbers were the 8 smallest among
the 15, to a high of 92 if they were the 8 largest,

36rYir92: ð1:2Þ

In the usual terminology, small or large values of Yi correspond respectively to
underexpression or overexpression of gene i for BRCA2 compared to BRCA1 tumors
(or equivalently downregulation or upregulation).

The points in Figure 1 are the actual Y counts. For example, the leftmost point,
plotted at (36,8), represents the 8 genes for which Yi equaled 36. The solid curve
shows the expected counts assuming no difference between BRCA1 and BRCA2
expression levels, i.e., under the permutation distribution of the numbers 1; 2;y; 15
[called the ‘‘Wilcoxon (7,8)’’ distribution in what follows]. The expected count is only
0.501 for Y ¼ 36; so there are 16 times as many genes with Yi ¼ 36 as we

Fig. 1. Rank sum statistics comparing BRCA1 versus BRCA2 for the 3,226 genes; points are actual

counts, solid curve shows expected counts under the null hypothesis of no activity differences. Dashed

curve is a Poisson regression fit to the actual counts, as explained in the Empirical Bayes Inferences

section.
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would expect if there were no expression differences between BRCA1 and BRCA2
tumors.

The dashed line, a smooth Poisson regression fit to the points, is much wider
than the expected curve, clearly indicating substantial genetic activity differences for
at least some of the genes. The question of interest is ‘‘which of the 3,226 genes can
we confidently label as differently active?’’ The naive answer would be to run 3,226
separate Wilcoxon tests. Six hundred fourteen of the Yi’s lie either below the 0.025
point for a standard Wilcoxon(7,8) distribution or above its 0.975 point. This would
give a reasonable criterion for declaring any single prechosen gene differently active,
but it leads to an expected 161 false declarations if none of the 3,226 genes are
actually different.

Efron et al. [2001B] developed a simple empirical Bayes approach to this kind of
simultaneous inference problem. As described in the next section, the approach
produces believable a posteriori probabilities of activity differences for each gene,
starting with a minimum of a priori assumptions. In Figure 1’s case, we will see that
the estimated values of probability{different7Yi} for the 614 ‘‘rejected’’ genes range
from a low of 0.50 near the rejection thresholds to a high of nearly 0.95 at the
extremes of the Y scale.

The downside of the empirical Bayes approach is its ad hoc appearance
compared to the mathematical certitudes of standard hypothesis testing theory.
Benjamini and Hochberg [1995], beginning with an algorithm of Simes [1986],
developed an attractive new multiple comparison technique that produces exact
frequentist inferences for what they call the ‘‘false discovery rate’’ (FDR). Section 3
discusses the FDR algorithm and shows that in an important sense it exactly
matches the empirical Bayes methodology, perhaps strengthening belief in both
techniques. We can use the two approaches in a complementary way to answer the
kind of simultaneous inference problems raised in Figure 1. A useful variant called
the ‘‘local false discovery rate’’ is introduced in the section on Local False Discovery
Rate.

The Three-Way Comparison section returns to the full data set of Table I, using
the empirical Bayes methodology to make a three-way activity comparison between
BRCA1, BRCA2, and Sporadic tumors. We close in the Remarks section with some
notes and comments.

The statistics literature for microarrays is quite recent, with much of it
unpublished. Useful references for simultaneous testing situations include Newton
et al. [2000], Dudoit et al. [2000], Tusher et al. [2000], as well as Efron et al. [2001B].

EMPIRICAL BAYES INFERENCES

We assume that there are two classes of genes, ‘‘Different’’ and ‘‘Not Different,’’
in our example meaning that the gene is either differently or not differently expressed
in BRCA1 and BRCA2 tumors. Let the prior probabilities of the two classes be p1
and p0 ¼ 1� p1; with corresponding prior densities f1ðyÞ and f0ðyÞ for the summary
statistic Y ;

p1 ¼ ProbfDifferentg f1ð yÞ density of Yi if genei ‘‘Different’’

p0 ¼ ProbfNot Differentg f0ð yÞ density of Yi if genei ‘‘Not Different’’:
ð2:1Þ
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in (3.3). The 1995 paper took p0 ¼ 1; which here as in (2.3) is the most conservative
choice, minimizing ia and making inequality (3.5) least sharp. In more recent work,
Benjamini and Yekutieli [2001], they consider estimating p0; see also Storey
[2001A,B]. Empirical Bayes considerations, as in (2.5) and remark F of Efron et al.
[2001B], give intuitively appealing bounds for p0:

Figure 3 applies the FDR-controlling algorithm to the comparison of BRCA1
with BRCA2, using a ¼ 0:10 and p0 ¼ 1:0: The step function in the left panel shows
the ordered P values (3.1) for one-sided Wilcoxon tests of Hi versus the alternative
that genei underexpresses BRCA2; that is, Pi is the probability that a Wilcoxon(7,8)
variable is equal or less than the observed value Yi: The right panel shows R0:10

applied to the overexpression of BRCA2, now with Pi ¼ ProbfWilcoxonð7; 8ÞZYig:
(Notice that the step functions are empirical cdf’s of the P values, rotated 901:)

Fig. 3. Application of false discovery rate–controlling algorithm to BRCA1/BRCA2 comparison, a ¼
0:10; p0 ¼ 1:0: A: Step function shows ordered p-values for one-sided Wilcoxon tests that reject for small

values of rank sum statistic Yi ; R0:10 procedure (3.4) rejects for the 68 genes having Yir40: B: Same,

rejecting for large values of Yi ; R0:10 rejects for the 66 genes with YiZ88:
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The close connection of Benjamini and Hochberg’s FDR procedure with the
empirical Bayes methodology of the section on Empirical Bayes Inferences follows
directly from Bayes theorem. Let F0ðyÞ and F ðyÞ be the cumulative distribution
functions (CDFs) corresponding to f0ðyÞ in (2.1) and f ðyÞ in (2.2), and define the
‘‘Bayesian FDR’’ for fY r yg to be

FdrðyÞ � p0F0ðyÞ=F ðyÞ

¼Probfgenei Not Different7Yiryg ð3:6Þ

as in (2.3). If we have Ny genes with Yi r y then, starting from (2.1) and assuming
independence, the number Ny0 of the Ny from the ‘‘not different’’ class will be
binomially distributed,

Ny07NyBBiðNi;FdrðyÞÞ; ð3:7Þ

and for large Ny we can expect FdrðyÞ to be close to FDRðYi r yÞ; (3.2). This will be
true even if the Yi are correlated, a mixing condition being enough to ensure
asymptotic equivalence, as shown in Genovese and Wasserman [2001] and Storey
[2001A].

Now let %FðyÞ be the usual empirical CDF of the Yi’s, %FðyÞ ¼ #fYiryg=n: The
obvious nonparametric estimate for FdrðyÞ is

FdrðyÞ ¼ p0F0ðyÞ= %FðyÞ: ð3:8Þ

Equivalence Theorem: The Benjamini-Hochberg rule Ra; (3.4) is equivalent to
rejecting all Hi with Yirya; where ya is defined by

ya ¼ max
y

fFdrðyÞrag: ð3:9Þ

Reversing the y scale, a similar result holds for rejection regions fYiZyg:

Proof: Let YðiÞ indicate the ith ordered value of fY1;Y2;y;Yng: Then %FðYðiÞÞ ¼ i=n
and F0ðYðiÞÞ ¼ PðiÞ: The constraint FdrðyÞra is equivalent to

p0PðiÞ=ði=nÞra or PðiÞr
i

n

a
p0
; ð3:10Þ

coinciding with the FDR definitions (3.3), (3.4). Tied values of Yi can be ordered
arbitrarily without affecting this argument, as can be seen from inspection of
Figure 3.

The equivalence theorem says that if we choose the rejection region fYiryg as
large as possible subject to the constraint that the estimated empirical Bayes
probability ProbfNot Different7Yryg is no greater than a; than our expected
proportion of false rejections is also less than a: This is true for any choice of p0 in
the two algorithms and in particular for the conservative choice p0 ¼ 1: In this
situation one can be both a Bayesian and frequentist simultaneously.

The FDR theorem was originally proved under an independence assumption on
the test statistics Y1;Y2;y;Yn: Recent work by Benjamini and Yekutieli [2001],
relaxes this assumption to allow a form of positive dependence. However,
independence plays no essential role in the empirical Bayes approach — all we
need is %FðyÞ in (3.8) to be a reasonable estimator of F ðyÞ — which suggests that the
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fðYÞ is the actual proportion of false detections if we reject all null hypotheses
having YiAY; while its expectation is Benjamini and Hochberg’s definition (3.2),
FDRðYÞ: The estimate FdrðYÞ; (4.8), amounts to substituting the expectation

e0ðYÞ � Ef0fN0ðYÞg ¼ np0F0ðYÞ ð4:11Þ

for the unobservable numerator N0ðYÞ in (4.10),

FdrðYÞ ¼ e0ðYÞ=NðYÞ: ð4:12Þ

Conservative Bias Theorem: The empirical Bayes FDR FdrðYÞ is biased upward as
an estimator of the frequentist FDR, FDRðYÞ, for the rule that rejects all Hi having
YiAY; (3.2).

The proof is given in Efron, Storey, and Tibshirani [2001A] See Remark E, and
also Theorem 2 of Storey [2001B].

A crucial assumption for empirical Bayes estimates like those in Figure 2 is that
we can estimate the expected number of true null hypotheses N0ðYÞ among those
genes having Yi in a region of interest Y: To this end we used e0ðYÞ; (4.11), or
e0ðyÞ ¼ np0f0ðyÞ for the local fdr. Overestimates of EfN0ðYÞg; by taking p0 ¼ 1 for
instance, increase the conservative bias. More aggressive empirical Bayes estimators
such as the dotted curve in Figure 2 put more strain on accurately estimating
EfN0ðYÞg:

The conservative bias theorem applies to a fixed choice of Y; whereas the
original FDR algorithm (3.3), (3.4) selects the rejection set Ya adaptively, in a
‘‘greedy’’ way that might seem to generate an anticonservative bias. However the
sophisticated calculations of Benjamini and Hochberg [1995] and Benjamini and
Yekutieli [2001] show it is still true that EffðYaÞgra; (3.5).

Exchangeability and Prior Beliefs

Empirical Bayes estimates like those in Figure 2 tacitly assume some form of
exchangeability of prior beliefs among the genes. This section examines the
exchangeability assumption, also discussing what happens when we want to
incorporate nonexchangeable prior information.

As an example consider the value y ¼ 84 on the x axis of Figure 1; NðyÞ ¼ 36 of
the genes have Wilcoxon statistic Yi ¼ 84; versus an expected number of about 7
‘‘Not Different’’ genes if we set p0 ¼ #p0;max ¼ 0:67;

e0ðyÞ ¼ EfN0ðyÞg ¼ np0f0ðyÞ ¼ 7:05: ð4:13Þ

This gives an estimate of p0ðyÞ ¼ fdrðyÞ ¼ ProbfNot Different 7Y ¼ yg;

%p0ðyÞ ¼ fdrðyÞ ¼
7:05

36
¼ 0:196; ð4:14Þ

as in (4.12) with Y ¼ y; or (2.3) with f ðyÞ estimated by %fðyÞ ¼ 36=n:
The exchangeability assumption is transparent in this case: we expect about 7 of

the 36 genes with Yi ¼ 36 to be ‘‘Not Different,’’ and assign a posteriori probability
7/36 to all 36. Notice that exchangeability is required only among the 36 genes, not
among all 3,226. In this sense, the local fdr estimate relies less than global estimates
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straightforward applications to multiway comparisons. On the other hand, an
inference of ‘‘Different’’ is less definitive for multiway comparisons. In the two-way
comparison of Figure 2, genes that were significantly Different fell into two
clear categories: ‘‘Different with BRCA2 expression greater than BRCA1’’ on the
right, and the reverse on the left. Things are less clearcut in Figure 4. Seventy-one of
the 3,226 points fall beyond the 0.90 contours, having posterior probability
greater than 0.90 of being Different. These are located toward the right or left
extremes of the hexagon, with right again indicating BRCA2 expression greater than
BRCA1.

However, the status of the Sporadic response for these points is less clear, the
choices ‘‘BRCA1 o Sporadic o BRCA2,’’ ‘‘BRCA1 o BRCA2 o Sporadic,’’ etc.
remaining ambiguous. Further information is available, by separately examining
versions of Figure 2 that apply to the Sporadic-BRCA1 comparison and the
Sporadic-BRCA2 comparison, but this tactic was only moderately helpful here.

Fig. 4. Three-way comparison of the breast cancer microarray data; contours of #p1ðyÞ ¼
ProbfDifferent Yi ¼ yg; ‘‘9’’ shows #p1ðyÞ ¼ 0:90 etc. The contours are vertically oriented, indicating

stronger expression differences between BRCA1 and BRCA2 tumors than between Sporadic and either

BRCA. Hexagonal boundary indicates feasible region for rank-sum vectors Yi; (5.1); Points are the 3,226
Yi vectors ‘‘+’’ is center (1/3, 1/3, 1/3) of simplex S; (5.2). The three corners of S lie outside the range of

this figure, beyond the ‘‘OVEREXPRESSED’’ legends.
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score Yi: (‘‘More efficient’’ was defined in terms of the number of genes with
p1ðYiÞZ0:90:) In this case, permutation methods were essential to the estimation
of f0ðyÞ:

The Three-Way Comparison

The contours in Figure 4 were computed using logistic regression: 10 � 3,226
vectors yi were generated by randomly permuting the integers 1; 2;y; 22;
partitioning them into groups of 7, 8, and 7, and applying definition (5.1). The
3,226 actual vectors Yi and the 32; 260 vectors yi were plotted in the simplex S:
Thinking of the Yis as Successes and the yis as Failures, a logistic regression was run
to estimate the probability of success, say #pðY Þ; as a mixed quadratic function of the
coordinates of the point Y inS: Finally, p1ðY Þ ¼ ProbfDifferent 7Yg was estimated
to be

#p1ðY Þ ¼ 1� p0
1� #pðY Þ
10 � #pðY Þ

; ð6:1Þ

with p0 set equal to 1 in Figure 4. [Formula (6.1) follows from the ratio of Successes
to Failures, pðY Þ ¼ f ðY Þ=ðf ðY Þ þ 10 � f0ðY ÞÞ:] Notice that the shape of the contours
does not depend on p0; while the probability level assigned to the curves does, with
#p0ðyÞ ¼ 1� #p1ðyÞ being directly proportional to p0:

True and Untrue Null Hypotheses

A pleasant surprise of the original FDR algorithm (3.3–3.5) was that its proof
required no probabilistic assumptions about the untrue null hypotheses among
H1;H2;y;Hn: Only the P values for the true Hi needed to be independent uniform
variates. The same phenomenon occurs for Bayesian FDR: the Conservative Bias
Theorem (4.13) holds true conditionally on N1ðYÞ; the number of ‘‘Different’’ genes
having Yi ¼ Y; Different equaling untrue in our terminology.

In fact, as pointed out in (4.11, 4.12), the only quantity required for the
estimation of FdrðYÞ is e0ðYÞ ¼ Ef0fN0ðYÞg; the expected number of ‘‘true’’ Yi in Y:
Only f0ðyÞ plays a computational role in the Bayesian assumptions (2.1–2.2), whereas
f1ðyÞ is functionally unimportant. However, this does not diminish the point of the
Exchangeability and Prior Beliefs section, that the interpretation of the FDR results,
Bayesian or frequentist, requires some form of exchangeability for application to any
particular gene.

Prediction

Hedenfalk et al. [2001] were interested in the prediction problem: given a new
unclassified microarray plate, how should it be assigned to one of the three categories
BRCA1, BRCA2, or Sporadic? The empirical Bayes methodology of this article
bears on the prediction problem.

Consider the situation of Figure 1 where we are only interested in the two
categories BRCA1 versus BRCA2. Let X be the 3,226 vector of data from a new
plate, and suppose we want to classify it as the basis of a linear discriminant function
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